Expression profiles of potential target genes in disseminated gastric cancer
https://doi.org/10.17650/1726-9784-2017-16-4-25-28
Abstract
About the Authors
F. M. KipkeevaRussian Federation
T. A. Muzaffarova
Russian Federation
M. N. Narimanov
Russian Federation
O. A. Malekhova
Russian Federation
T. A. Bogush
Russian Federation
A. V. Karpukhin
Russian Federation
References
1. Terry M.B., Gaudet M.M., Gammon M.D. The epidemiology of gastric cancer. Semin Radiat Oncol 2002; 12(2): 111 -27. DOI: 10.1053/srao.30814. PMID: 11979413.
2. Когония Л.М., Корнилова А.Г. Метастатический рак желудка: новое в лекарственной терапии. Альманах клинической медицины 2013; 29: 65-70. DOI: http://dx.doi.org/10.18786/2072-0505-2013-29-65-70.
3. Katz L.H., Likhter M., Jogunoori W. et al. TGF-ß signaling in liver and gastrointestinal cancers. Cancer Lett 2016; 379(2): 166-72. DOI: 10.1016/j.canlet.2016.03.033. PMID: 27039259.
4. Li L., Jiang X., Zhang Q. et al. Neuropil-in-1 is associated with clinicopathology of gastric cancer and contributes to cell proliferation and migration as multifunctional co-receptors. J Exp Clin Cancer Res 2016; 35: 16. DOI: 10.1186/s13046-016-0291-5. PMID: 26795388.
5. Prud’homme G.J., Glinka Y. Neuropil-ins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity. Oncotarget 2012; 3(9): 921-39. DOI: 10.18632/oncotarget.626. PMID: 22948112.
6. Djordjevic S., Driscoll P.C. Targeting VEGF signalling via the neuropilin co-receptor. Drug Discovery Today 2013; 18(9-10): 447-55. DOI: 10.1016/j.drudis.2012.11.013. PMID: 23228652.
7. Korc M., Friesel R.E. The role of fibroblast growth factors in tumor growth. Curr Cancer Drug Targets 2009; 9(5): 639-51. PMID: 19508171.
8. Lieu C., Heymach J., Overman M. et al. Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clin Cancer Res 2011; 17(19): 6130-9. DOI: 10.1158/1078-0432.CCR-11-0659. PMID: 21953501.
9. Zhao M., Yu Z., Li Z. et al. Expression of angiogenic growth factors VEGF, bFGF and ANG1 in colon cancer after bevacizumab treatment in vitro: a potential self-regulating mechanism. Oncol Rep 2017; 37(1): 601-7. DOI: 10.3892/or.2016.5231. PMID: 27840995.
10. Kilgour E., Su X., Zhan P. et al. Prevalence and prognostic significance of FGF receptor 2 (FGFR2) gene amplification in Caucasian and Korean gastric cancer cohorts. J Clin Oncol 2012; 30(suppl; abstr 4124).
11. Park Y.S., Na Y.S., Ryu M.H. et al. FGFR2 assessment in gastric cancer using quantitative real-time polymerase chain reaction, fluorescent in situ hybridization, and immunohistochemistry. Am J Clin Pathol 2015; 143(6): 865-72. DOI: 10.1309/AJCPNFLSMWWPP8DR. PMID: 25972329.
12. Xie L., Su X., Zhang L. et al. FGFR2 gene amplification in gastric cancer predicts sensitivity to the selective FGFR inhibitor AZD4547. Clin Cancer Res 2013; 19(9): 2572-83. DOI: 10.1158/1078-0432.CCR-12-3898. PMID: 23493349.
13. Bang Y.J., Van Cutsem E., Feyereislova A. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER-2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 2010; 376(9742): 687-97. DOI: 10.1016/S0140-6736(10)61121-X. PMID: 20728210.
14. Mullan P.B., Quinn J.E., Gilmore P.M. et al. BRCA1 and GADD45 mediated G2/M cell cycle arrest in response to antimicrotubule agents. Oncogene 2001; 20(43): 6123-31. DOI: 10.1038/sj.onc.1204712. PMID: 11593420.
Review
For citations:
Kipkeeva F.M., Muzaffarova T.A., Narimanov M.N., Malekhova O.A., Bogush T.A., Karpukhin A.V. Expression profiles of potential target genes in disseminated gastric cancer. Russian Journal of Biotherapy. 2017;16(4):25-28. (In Russ.) https://doi.org/10.17650/1726-9784-2017-16-4-25-28