Preview

Российский биотерапевтический журнал

Расширенный поиск

Клиническая оценка профиля метилирования промоторных областей 8 генов хромосомы 3 и гена MGMT при люминальном типе рака молочной железы

https://doi.org/10.17650/1726-9784-2017-16-4-38-45

Полный текст:

Аннотация

Введение. Эпигенетические изменения генов-супрессоров опухолевого роста рассматривают как наиболее тонкий и динамичный механизм регуляции генов, в том числе генов, вовлеченных в развитие рака молочной железы (РМЖ). Огромный интерес в изучении роли метилирования в патогенезе РМЖ представляют гены, расположенные на коротком плече хромосомы 3, и ген MGMT (10q26), для которых имеются крайне противоречивые данные об уровне их метилирования в опухолях. Цель исследования - изучение роли метилирования промоторных районов генов RASSF1A, SEMA3B, RARß2, RHOA, GPX1, USP4, DAG1, NKIRAS1 и MGMT в патогенезе эпителиальных опухолей молочной железы. Материалы и методы. Образцы опухолевой и окружающей гистологически неизмененной ткани от 174 больных РМЖ собраны и клинически охарактеризованы в ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России. Анализ метилирования ДНК проводили с использованием 2 независимых методов. Метилирование генов RASSF1A, SEMA3B, RARß2 и MGMT изучали с помощью полимеразной цепной реакции, специфичной к метилированному аллелю. Анализ метилирования промоторных районов генов RHOA, GPX1, USP4, DAG1 и NKIRAS1 выполняли с применением 2 метилчувствительных рестриктаз - HpalI и HhaI - и последующей полимеразной цепной реакции. Результаты. Показана статистически значимо высокая частота метилирования генов RASSF1A, SEMA3B, RARß2 и MGMT в эпителиальных опухолях молочной железы по сравнению с гистологически нормальной тканью от тех же пациенток. Выявлены значимые корреляции частоты метилирования генов RARß2 и MGMT с различными клинико-морфологическими характеристиками злокачественного процесса. Впервые показана статистически значимая связь между метилированием генов RASSF1A, RARß2 и MGMT и выживаемостью пациенток. Заключение. Полученные данные об эпигенетических нарушениях при люминальном типе РМЖ дополняют «молекулярный портрет» этого вида рака и вносят вклад в понимание его патогенеза. Выявленные особенности метилирования исследованных генов могут найти клиническое применение для разработки современных подходов к прогнозированию, профилактике и выбору тактики лечения РМЖ у пациенток московского региона.

Об авторах

Д. А. Рябчиков
ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России
Россия


И. К. Воротников
ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России
Россия


Т. П. Казубская
ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России
Россия


С. С. Лукина
ФГБНУ «Научно-исследовательский институт общей патологии и патофизиологии»
Россия


Е. А. Филиппова
ФГБНУ «Научно-исследовательский институт общей патологии и патофизиологии»
Россия


А. М. Бурденный
ФГБНУ «Научно-исследовательский институт общей патологии и патофизиологии»
Россия


В. И. Логинов
ФГБНУ «Научно-исследовательский институт общей патологии и патофизиологии»; ФБГНУ «Медико-генетический научный центр»
Россия


Список литературы

1. Состояние онкологической помощи населению России в 2014 году. Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена - филиал ФГБУ «НМИРЦ» Минздрава России, 2015. С. 5-11.

2. Давыдов М.И., Аксель Е.М. Статистика злокачественных новообразований в России и странах СНГ в 2008 г. Вестник РОНЦ им. Н.Н. Блохина РАМН 2010; 21(S2): 52-86.

3. Safarpour D., Tavassoli F.A. A targetable androgen receptor-positive breast cancer subtype hidden among the triple-negative cancers. Arch Pathol Lab Med 2015; 139(5): 612-7. DOI: 10.5858/arpa.2014-0122-RA. PMID: 25310144.

4. Buganim Y., Rotter V. p53: balancing tumour suppression and implications for the clinic. Eur J Cancer 2009; 45(Suppl 1): 217-34. DOI: 10.1016/S0959-8049(09)70037-1. PMID: 19775621.

5. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16(1): 6-21. DOI: 10.1101/ gad.947102. PMID: 11782440.

6. Prokhortchouk E., Hendrich B. Methyl-CpG binding proteins and cancer: are MeCpGs more important than MBDs? Oncogene 2002; 21(35): 5394-9. DOI: 10.1038/sj.onc.1205631. PMID: 12154402.

7. Zabarovsky E.R., Senchenko V., Loginov V. et al. Positional cloning of tumor suppressor genes from 3p21.3 involved in major human cancers. In book: Horizons in Cancer Research. Ed. F. Columbus. New York: Nova Science Publishers, Inc., 2011, 42, chapter 4. Pp. 103-127.

8. Dmitriev A.A., Kashuba V.I., Haraldson K. et al. Genetic and epigenetic analysis of non-small cell lung cancer with NotI-microarrays. Epigenetics 2012; 7(5): 502-13. DOI: 10.4161/epi.19801. PMID: 22491060.

9. Agathanggelou A., Cooper W.N., Latif F. Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res 2005; 65(9): 3497- 508. DOI: 10.1158/0008-5472.CAN-04-4088. PMID: 15867337.

10. Kashuba V., Dmitriev A.A., Krasnov G.S. et al. NotI microarrays: novel epigenetic markers for early detection and prognosis of high grade serous ovarian cancer. Int J Mol Sci 2012; 13(10): 13352-77. DOI: 10.3390/ijms131013352. PMID: 23202957.

11. Брага Э.А., Ходырев Д.С., Логинов В.И. и др. Метилирование в регуляции экспрессии генов хромосомы 3 и генов микроРНК при светлоклеточном почечно-клеточном раке. Генетика 2015; 51(6): 668-74.

12. Horiuchi A., Imai T., Wang C. et al. Up-regulation of small GTPases, RhoA and RhoC, is associated with tumor progression in ovarian carcinoma. Lab Invest 2003; 83(6): 861 -70. PMID: 12808121.

13. Ходырев Д.С., Логинов В.И., Пронина И.В. и др. Изменение метилирования генов из критичных районов хромосомы 3 в эпителиальных опухолях. Молекулярная медицина 2011; 1: 3-10.

14. Логинов В.И., Пронина И.В., Бурденный А.М. и др. Роль метилирования в регуляции экспрессии функционально значимых генов хромосомы 3: RHOA, GPX1, USP4, DAG1, NKIRAS1 - в опухолях молочной железы. Молекулярная медицина 2014; 6: 30-7.

15. Ma L., Liu Y.P., Geng C.Z. et al. Overexpression of Rhoa is associated with progression in invasive breast duct carcinoma. Breast J 2010; 16(1): 105-7. DOI: 10.1111/j.1524-4741.2009.00860.x. PMID: 19912238.

16. Brennan P.A., Jing J., Ethunandan M., Gorecki D. Dystroglycan complex in cancer. Eur J Surg Oncol 2004; 30(6): 589-92. DOI: 10.1016/j.ejso.2004.03.014. PMID: 15256230.

17. Faucher K., Rabinovitch-Chable H., Barriere G. et al. Overexpression of cytosolic glutathione peroxidase (GPX1) delays endothelial cell growth and increases resistance to toxic challenges. Biochimie 2003; 85(6): 611-7. PMID: 12829378.

18. Min S.Y., Kim H.S., Jung E.J. et al. Prognostic significance of glutathione peroxidase 1 (GPX1) down-regulation and correlation with aberrant promoter methylation in human gastric cancer. Anticancer Res 2012; 32(8): 3169-75. PMID: 22843889.

19. Kulak M.V., Cyr A.R., Woodfield G.W. et al. Transcriptional regulation of the GPX1 gene by TFAP2C and aberrant CpG methylation in human breast cancer. Oncogene 2013; 32(34): 4043-51. DOI: 10.1038/onc.2012.400. PMID: 22964634.

20. Hwang S.J., Lee H.W., Kim H.R. et al. Ubiquitin-specific protease 4 controls metastatic potential through ß-catenin stabilization in brain metastatic lung adenocarcinoma. Sci Rep 2016; 6: 21596. DOI: 10.1038/srep21596. PMID: 26883469.

21. Xu X.C. Tumor-suppressive activity of retinoic acid receptor-beta in cancer. Cancer Lett 2007; 253(1): 14-24. DOI: 0.1016/j.canlet.2006.11.019. PMID: 17188427.

22. Wu L., Shen Y., Peng X. et al. Aberrant promoter methylation of cancer-related genes in human breast cancer. Oncol Lett 2016; 12(6): 5145-55. DOI: 10.3892/ ol.2016.5351. PMID: 28105221.

23. Chen Y., Vallee S., Wu J. et al. Inhibition of NF-kappaB activity by IkappaBbeta in association with kappaB-Ras. Mol Cell Biol 2004; 24(7): 3048-56. DOI: 10.1128/MCB.24.7.3048-3056.2004. PMID: 15024091.

24. Sato A., Sunayama J., Matsuda K.I. MEK-ERK signaling dictates DNA-repair gene MGMT expression and temo-zolomide resistance of stem-like glioblastoma cells via the MDM2-p53 axis. Stem Cells 2011; 29(12): 1942-51. DOI: 10.1002/stem.753. PMID: 21957016.

25. Abouzeid H.E., Kassem A.M., Abdel Wahab A.H. et al. Promoter hypermeth-ylation of RASSF1A, MGMT, and HIC-1 genes in benign and malignant colorectal tumors. Tumour Biol 2011; 32(5): 845-52. DOI: 10.1007/s13277-011-0156-7. PMID: 21274674.

26. Kulis M., Esteller M. DNA methylation and cancer. Adv Genet 2010; 70: 27-56. DOI: 10.1016/B978-0-12-380866-0.60002-2. PMID: 20920744.

27. Sobin L.Y., Wittekind Ch. UICC - TNM classification of malignant tumours. New York: Wiley-Liss, 2002. Pp. 193-195.

28. World health organization classification of tumours. Pathology and genetics of tumours of the breast and female genital organs. Eds.: F.A. Tavassoli, P. Devilee. Lyon: IARC Press, 2003.

29. Lester S.C., Bose S., Chen Y.Y. et al. Protocol for the examination of specimens from patients with invasive carcinoma of the breast. Arch Pathol Lab Med 2009; 133(10): 1515-38. DOI: 10.1043/1543-2165-133.10.1515. PMID: 19792042.

30. Clark S.J., Harrison J., Paul C.L., Frommer M. High sensitivity mapping of methylated cytosines. Nucl Acids Res 1994; 22(15): 2990-7. PMID: 8065911.

31. Казубская Т.П., Логинов В.И., Ходырев Д.С. и др. Метилирование генов RASSF1A, RARß2, SEMA3B в эпителиальных опухолях молочной железы, яичников и полинеоплазии. Опухоли женской репродуктивной системы 2012; 1(12): 61-9.

32. Бурденный А.М., Челышева Д.С., Ходырев Д.С. и др. Роль гиперметилирования промоторных районов генов RASSF1A и MGMT в развитии рака молочной железы и яичников. Вестник РОНЦ им. Н.Н. Блохина РАМН 2015; 26(2): 39-44.

33. Feng W., Shen L., Wen S. et al. Correlation between CpG methylation profiles and hormone receptor status in breast cancers. Breast Cancer Res 2007; 9(4): R57. DOI: 10.1186/bcr1762. PMID: 17764565.

34. Park S.Y., Kwon H.J., Choi Y. et al. Distinct patterns of promoter CpG island methylation of breast cancer subtypes are associated with stem cell phenotypes. Mod Pathol 2012; 25(2): 185-96. DOI: 10.1038/modpathol.2011.160. PMID: 22037257.

35. Asiaf A., Ahmad S.T., Malik A.A. et al. Protein expression and methylation of MGMT, a DNA repair gene and their correlation with clinicopathological parameters in invasive ductal carcinoma of the breast. Tumour Biol 2015; 36(8): 6485-96. DOI: 10.1007/ s13277-015-3339-9. PMID: 25820821.

36. Xu J., Shetty P.B., Feng W. et al. Methylation of HIN-1, RASSF1A, RIL and CDH13 in breast cancer is associated with clinical characteristics, but only RASSF1A methylation is associated with outcome. BMC Cancer 2012; 12: 243. DOI: 10.1186/1471-2407-12-243.


Для цитирования:


Рябчиков Д.А., Воротников И.К., Казубская Т.П., Лукина С.С., Филиппова Е.А., Бурденный А.М., Логинов В.И. Клиническая оценка профиля метилирования промоторных областей 8 генов хромосомы 3 и гена MGMT при люминальном типе рака молочной железы. Российский биотерапевтический журнал. 2017;16(4):38-45. https://doi.org/10.17650/1726-9784-2017-16-4-38-45

For citation:


Ryabchikov D.A., Vorotnikov I.K., Kazubskaya T.P., Lukina S.S., Filippova E.A., Burdennyy A.M., Loginov V.I. Clinical assessement of the 8 genes on chromosome 3 with also MGMT gene promoter regions methylaton status in patients with breast cancer luminal hystotype. Russian Journal of Biotherapy. 2017;16(4):38-45. (In Russ.) https://doi.org/10.17650/1726-9784-2017-16-4-38-45

Просмотров: 206


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)