Preview

Russian Journal of Biotherapy

Advanced search

Clinical assessement of the 8 genes on chromosome 3 with also MGMT gene promoter regions methylaton status in patients with breast cancer luminal hystotype

https://doi.org/10.17650/1726-9784-2017-16-4-38-45

Abstract

Background. Epigenetic changes of TSG are supposed as the most fine and active genes regulation mechanism in particular breast cancer (BC) genes pathway development. The most valuable results are awaited for methylation role of genes located on the short arm of chromosome 3 with also MGMT gene (10q26) in BC pathogenesis because of their ambiguous data for methylation status in tumors. Objective: to illustrate the specific methylation role of the RASSF1A, SEMA3B, RARß2, RHOA, GPX1, USP4, DAG1, NKIRAS1 and MGMT genes promoter regions in BC pathogenesis. Materials and methods. Sample set of 174 BC patients consists of tumor and surrounding histologically normal tissue that were collected and clinically characterized in the N.N. Blokhin National Medical Research Center of Oncology. Two substantive methods were used to evaluate DNA methylation status. To analyse RASSF1A, SEMA3B, RARß2 and MGMT genes methylation we used polymerase chain reaction specific for the methylated allele. Whereas for analyses RHOA, GPX1, USP4, DAG1, NKIRAS1 promoter regions genes methylation status was used methyl sensitive restriction analyses with 2 methyl sensitive endonuclaeses HpaII and HhaI with subsequent polymerase chain reaction. Results. A statistically significant high frequency of RASSF1A, SEMA3B, RARß2, and MGMT genes methylation in epithelial breast tumors compared with histologically normal tissue from the same patients was shown. Significant correlation of RARß2 and MGMT genes methylation frequency considering the different clinical and morphological characteristics of the malignant process was revealed. The statistically significant relationship between methylation of RASSF1A, RARß2 and MGMT genes and patient survival is shown for the first time. Conclusion. The findings of epigenetic changes in the luminal BC supplement the “molecular picture” of this cancer and contribute to an understanding of its pathogenesis. The revealed features of investigated genes methylation can find clinical application for the development of modern approaches to prognosis, prevention and choice of tactics for treatment of BC in females of the Moscow region.

About the Authors

D. A. Ryabchikov
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation


I. K. Vorotnikov
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation


T. P. Kazubskaya
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation


S. S. Lukina
Institute of General Pathology and Pathophysiology
Russian Federation


E. A. Filippova
Institute of General Pathology and Pathophysiology
Russian Federation


A. M. Burdennyy
Institute of General Pathology and Pathophysiology
Russian Federation


V. I. Loginov
Institute of General Pathology and Pathophysiology; Research Center of Medical Genetics
Russian Federation


References

1. Состояние онкологической помощи населению России в 2014 году. Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена - филиал ФГБУ «НМИРЦ» Минздрава России, 2015. С. 5-11.

2. Давыдов М.И., Аксель Е.М. Статистика злокачественных новообразований в России и странах СНГ в 2008 г. Вестник РОНЦ им. Н.Н. Блохина РАМН 2010; 21(S2): 52-86.

3. Safarpour D., Tavassoli F.A. A targetable androgen receptor-positive breast cancer subtype hidden among the triple-negative cancers. Arch Pathol Lab Med 2015; 139(5): 612-7. DOI: 10.5858/arpa.2014-0122-RA. PMID: 25310144.

4. Buganim Y., Rotter V. p53: balancing tumour suppression and implications for the clinic. Eur J Cancer 2009; 45(Suppl 1): 217-34. DOI: 10.1016/S0959-8049(09)70037-1. PMID: 19775621.

5. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16(1): 6-21. DOI: 10.1101/ gad.947102. PMID: 11782440.

6. Prokhortchouk E., Hendrich B. Methyl-CpG binding proteins and cancer: are MeCpGs more important than MBDs? Oncogene 2002; 21(35): 5394-9. DOI: 10.1038/sj.onc.1205631. PMID: 12154402.

7. Zabarovsky E.R., Senchenko V., Loginov V. et al. Positional cloning of tumor suppressor genes from 3p21.3 involved in major human cancers. In book: Horizons in Cancer Research. Ed. F. Columbus. New York: Nova Science Publishers, Inc., 2011, 42, chapter 4. Pp. 103-127.

8. Dmitriev A.A., Kashuba V.I., Haraldson K. et al. Genetic and epigenetic analysis of non-small cell lung cancer with NotI-microarrays. Epigenetics 2012; 7(5): 502-13. DOI: 10.4161/epi.19801. PMID: 22491060.

9. Agathanggelou A., Cooper W.N., Latif F. Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res 2005; 65(9): 3497- 508. DOI: 10.1158/0008-5472.CAN-04-4088. PMID: 15867337.

10. Kashuba V., Dmitriev A.A., Krasnov G.S. et al. NotI microarrays: novel epigenetic markers for early detection and prognosis of high grade serous ovarian cancer. Int J Mol Sci 2012; 13(10): 13352-77. DOI: 10.3390/ijms131013352. PMID: 23202957.

11. Брага Э.А., Ходырев Д.С., Логинов В.И. и др. Метилирование в регуляции экспрессии генов хромосомы 3 и генов микроРНК при светлоклеточном почечно-клеточном раке. Генетика 2015; 51(6): 668-74.

12. Horiuchi A., Imai T., Wang C. et al. Up-regulation of small GTPases, RhoA and RhoC, is associated with tumor progression in ovarian carcinoma. Lab Invest 2003; 83(6): 861 -70. PMID: 12808121.

13. Ходырев Д.С., Логинов В.И., Пронина И.В. и др. Изменение метилирования генов из критичных районов хромосомы 3 в эпителиальных опухолях. Молекулярная медицина 2011; 1: 3-10.

14. Логинов В.И., Пронина И.В., Бурденный А.М. и др. Роль метилирования в регуляции экспрессии функционально значимых генов хромосомы 3: RHOA, GPX1, USP4, DAG1, NKIRAS1 - в опухолях молочной железы. Молекулярная медицина 2014; 6: 30-7.

15. Ma L., Liu Y.P., Geng C.Z. et al. Overexpression of Rhoa is associated with progression in invasive breast duct carcinoma. Breast J 2010; 16(1): 105-7. DOI: 10.1111/j.1524-4741.2009.00860.x. PMID: 19912238.

16. Brennan P.A., Jing J., Ethunandan M., Gorecki D. Dystroglycan complex in cancer. Eur J Surg Oncol 2004; 30(6): 589-92. DOI: 10.1016/j.ejso.2004.03.014. PMID: 15256230.

17. Faucher K., Rabinovitch-Chable H., Barriere G. et al. Overexpression of cytosolic glutathione peroxidase (GPX1) delays endothelial cell growth and increases resistance to toxic challenges. Biochimie 2003; 85(6): 611-7. PMID: 12829378.

18. Min S.Y., Kim H.S., Jung E.J. et al. Prognostic significance of glutathione peroxidase 1 (GPX1) down-regulation and correlation with aberrant promoter methylation in human gastric cancer. Anticancer Res 2012; 32(8): 3169-75. PMID: 22843889.

19. Kulak M.V., Cyr A.R., Woodfield G.W. et al. Transcriptional regulation of the GPX1 gene by TFAP2C and aberrant CpG methylation in human breast cancer. Oncogene 2013; 32(34): 4043-51. DOI: 10.1038/onc.2012.400. PMID: 22964634.

20. Hwang S.J., Lee H.W., Kim H.R. et al. Ubiquitin-specific protease 4 controls metastatic potential through ß-catenin stabilization in brain metastatic lung adenocarcinoma. Sci Rep 2016; 6: 21596. DOI: 10.1038/srep21596. PMID: 26883469.

21. Xu X.C. Tumor-suppressive activity of retinoic acid receptor-beta in cancer. Cancer Lett 2007; 253(1): 14-24. DOI: 0.1016/j.canlet.2006.11.019. PMID: 17188427.

22. Wu L., Shen Y., Peng X. et al. Aberrant promoter methylation of cancer-related genes in human breast cancer. Oncol Lett 2016; 12(6): 5145-55. DOI: 10.3892/ ol.2016.5351. PMID: 28105221.

23. Chen Y., Vallee S., Wu J. et al. Inhibition of NF-kappaB activity by IkappaBbeta in association with kappaB-Ras. Mol Cell Biol 2004; 24(7): 3048-56. DOI: 10.1128/MCB.24.7.3048-3056.2004. PMID: 15024091.

24. Sato A., Sunayama J., Matsuda K.I. MEK-ERK signaling dictates DNA-repair gene MGMT expression and temo-zolomide resistance of stem-like glioblastoma cells via the MDM2-p53 axis. Stem Cells 2011; 29(12): 1942-51. DOI: 10.1002/stem.753. PMID: 21957016.

25. Abouzeid H.E., Kassem A.M., Abdel Wahab A.H. et al. Promoter hypermeth-ylation of RASSF1A, MGMT, and HIC-1 genes in benign and malignant colorectal tumors. Tumour Biol 2011; 32(5): 845-52. DOI: 10.1007/s13277-011-0156-7. PMID: 21274674.

26. Kulis M., Esteller M. DNA methylation and cancer. Adv Genet 2010; 70: 27-56. DOI: 10.1016/B978-0-12-380866-0.60002-2. PMID: 20920744.

27. Sobin L.Y., Wittekind Ch. UICC - TNM classification of malignant tumours. New York: Wiley-Liss, 2002. Pp. 193-195.

28. World health organization classification of tumours. Pathology and genetics of tumours of the breast and female genital organs. Eds.: F.A. Tavassoli, P. Devilee. Lyon: IARC Press, 2003.

29. Lester S.C., Bose S., Chen Y.Y. et al. Protocol for the examination of specimens from patients with invasive carcinoma of the breast. Arch Pathol Lab Med 2009; 133(10): 1515-38. DOI: 10.1043/1543-2165-133.10.1515. PMID: 19792042.

30. Clark S.J., Harrison J., Paul C.L., Frommer M. High sensitivity mapping of methylated cytosines. Nucl Acids Res 1994; 22(15): 2990-7. PMID: 8065911.

31. Казубская Т.П., Логинов В.И., Ходырев Д.С. и др. Метилирование генов RASSF1A, RARß2, SEMA3B в эпителиальных опухолях молочной железы, яичников и полинеоплазии. Опухоли женской репродуктивной системы 2012; 1(12): 61-9.

32. Бурденный А.М., Челышева Д.С., Ходырев Д.С. и др. Роль гиперметилирования промоторных районов генов RASSF1A и MGMT в развитии рака молочной железы и яичников. Вестник РОНЦ им. Н.Н. Блохина РАМН 2015; 26(2): 39-44.

33. Feng W., Shen L., Wen S. et al. Correlation between CpG methylation profiles and hormone receptor status in breast cancers. Breast Cancer Res 2007; 9(4): R57. DOI: 10.1186/bcr1762. PMID: 17764565.

34. Park S.Y., Kwon H.J., Choi Y. et al. Distinct patterns of promoter CpG island methylation of breast cancer subtypes are associated with stem cell phenotypes. Mod Pathol 2012; 25(2): 185-96. DOI: 10.1038/modpathol.2011.160. PMID: 22037257.

35. Asiaf A., Ahmad S.T., Malik A.A. et al. Protein expression and methylation of MGMT, a DNA repair gene and their correlation with clinicopathological parameters in invasive ductal carcinoma of the breast. Tumour Biol 2015; 36(8): 6485-96. DOI: 10.1007/ s13277-015-3339-9. PMID: 25820821.

36. Xu J., Shetty P.B., Feng W. et al. Methylation of HIN-1, RASSF1A, RIL and CDH13 in breast cancer is associated with clinical characteristics, but only RASSF1A methylation is associated with outcome. BMC Cancer 2012; 12: 243. DOI: 10.1186/1471-2407-12-243.


Review

For citations:


Ryabchikov D.A., Vorotnikov I.K., Kazubskaya T.P., Lukina S.S., Filippova E.A., Burdennyy A.M., Loginov V.I. Clinical assessement of the 8 genes on chromosome 3 with also MGMT gene promoter regions methylaton status in patients with breast cancer luminal hystotype. Russian Journal of Biotherapy. 2017;16(4):38-45. (In Russ.) https://doi.org/10.17650/1726-9784-2017-16-4-38-45

Views: 536


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)