Preview

In silico and in vitro research of potential antineoplastic amino acid derivatives of indolocarbazol glycosides properties

https://doi.org/10.17650/1726-9784-2017-16-4-46-54

Abstract

Objective: to evaluate the prospects of the glycosides of indolocarbazole containing amino acid residues as potential antitumor compounds. Materials and methods. For 32 compounds by structural formulas using the methods of chemoinformatics, a number of molecular descriptors and the probability of manifestation of various types of biological activity were calculated, the cytotoxic activity was evaluated in vitro by methylthiazole tetrazolium (MTT) assay using five human tumor cell lines. Results. For the studied amino acid derivatives of glycosides of indolocarbazole, a high probability of antitumor activity with a low probability of cytotoxic activity in vitro is predicted by computer method. Low cytotoxic activity was confirmed in the MTT test on 5 cell lines. Computer methods were used to predict the mechanisms of possible antitumor activity and to calculate a number of molecular descriptors that are important for the qualification of substances as potential drugs. Conclusion. It is expedient to study the antitumor activity of amino-acid derivatives of glycosides of indolocarbazole in experiments on animals with transplanted tumors.

About the Authors

G. N. Apryshko
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation


O. S. Zhukova
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation


L. V. Fetisova
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation


N. K. Vlasenkova
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation


R. B. Pugacheva
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation


O. V. Goryunova
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation


References

1. Konlker H.J., Reddy K.R. Isolation and synthesis of biologically active carbazole alkaloids. Chem Rev 2002; 102(11): 4303-427. PMID: 12428991.

2. Prudhomme M. Recent developments of rebeccamycin analogues as topoisom-erase I inhibitors and antitumor agents. Med Chem 2000; 7(12): 1189-212. PMID: 11032967.

3. Meng L.H., Liao Z.Y., Pommier Y. Non-camptothecin DNA topoisome-rase I inhibitors in cancer therapy. Curr Top Med Chem 2003; 3(3): 305-20. PMID: 12570765.

4. Pereira E.R., Fabre S., Sanselme M. et al. Antimicrobial activities of indolocarbazole and bis-indole protein kinase C inhibitors. II. Substitution on maleimide nitrogen with functional groups bearing a labile hydrogen. J Antibiot (Tokyo) 1995; 48(8): 863-8. PMID: 7592032.

5. Sielecki T.M., Boylan J.F., Benfield P.A., Trainor G.L. Cyclin-dependent kinase inhibitors: useful targets in cell cycle regulation. J Med Chem 2000; 43(1): 1-18. PMID: 10633033.

6. Butler M.S. Natural products to drugs: natural product derived compounds in clinical trials. Nat Prod Rep 2005; 22(2): 162-95. DOI: 10.1039/ b402985m. PMID: 15806196.

7. Civenni G., Longoni N., Costales P. et al. EC-70124, a novel glycosylated in-dolocarbazole multikinase inhibitor, reverts tumorigenic and stem cell properties in prostate cancer by inhibiting STAT3 and NF-kB. Mol Cancer Ther 2016; 15(5): 806-18. DOI: 10.1158/15357163.MCT-15-0791. PMID: 26826115.

8. Shaaban K.A., Elshahawi S.I., Wang X. et al. Cytotoxic indolocarbazoles from Actinomadura melliaura ATCC 39691. J Nat Prod 2015; 78(7): 1723-9. DOI: 10.1021/acs.jnatprod.5b00429. PMID: 26091285.

9. Steinert G., Taylor M.W., Schup P.J. Diversity of Actinobacteria associated with the marine Ascidian Eudistoma toealen-sis. Mar Biotechnol 2015; 17(4): 377-85. DOI: 10.1007/s10126-015-9622-3. PMID: 25678260.

10. Prudhomme M. Biological targets of antitumor indolocarbazoles bearing a sugar moiety. Curr Med Chem Anticancer Agents 2004; 4(6): 509-21. PMID: 15579016.

11. Pindur U., Kim Y-S., Mehrabani F. Advances in indolo[2,3-a]carbazole chemistry: design and synthesis of protein kinase C and topoisomerase I inhibitors. Curr Med Chem 1999; 6(1): 29-69. PMID: 9873114.

12. Trostmann U., Hartenstein J., Barth H. et al. Патент Германии Ger. Offen DE 4243321 А1, June 23, 1994.

13. Trostmann U., Schaechtele C., Hartenstein J. et al. Патент США 5750555, May 12, 1998.

14. Горюнова О.В., Захарчук Г.М., Жукова О.С. и др. №-дипептидные производные Ш2-рибозил-индоло[2,3-а] карбазола. Биоорганическая химия 2014; 40(1): 12-9. DOI: 10.7868/S0132342314010047.

15. Omura S., Sasaki Y., Iwai Y., Takeshima H. Staurosporine, a potentially important gift from a microorganism. J Antibiot 1995; 48(7): 535-48. PMID: 7649849.

16. Апрышко Г.Н. Свидетельство о государственной регистрации базы данных «Противоопухолевые отечественные вещества, изученные в РОНЦ им. Н.Н. Блохина РАМН» № 2013620860. М.: Федеральная служба по интеллектуальной собственности, 29 июля 2013 г.

17. Филимонов Д.А., Поройков В.В. Прогноз спектра биологической активности органических соединений. Российский химический журнал 2006; 50(2): 66-75.

18. Filimonov D.A., Poroikov V.V. Probabilistic approach in activity prediction. In book: Chemoinformatics approaches to virtual screening. Eds.: A. Varnek, A. Tropsha. Cambridge (UK): RSC Publishing, 2008. Pp. 182-216.

19. Филимонов Д.А., Лагунин А.А., Глориозова Т.А. и др. Предсказание спектров биологической активности органических соединений с помощью веб-ресурса PASS Online. Химия гетероциклических соединений 2014; 3: 483-99.

20. Trepalin S.V., Yarkov A.V. CheD: chemical database compilation tool, internet server, and client for sql servers. J Chem Inf Comput Sci 2001; 41(1): 100-7. PMID: 11206361. http://www.vcclab.org/lab/alogps.

21. Трещалина Е.М., Жукова О.С., Герасимова Г.К. и др. Методические рекомендации по доклиническому изучению противоопухолевой активности лекарственных средств. В кн.: Руководство по проведению доклинических исследований лекарственных средств. Часть первая. М.: Гриф и К, 2012. С. 642-656.

22. Mossman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65(1-2): 55-63. PMID: 6606682.

23. Lipinski C.A., Lombardo F., Dominy B.W., Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev 2001; 46(1-3): 3-26. PMID: 11259830.

24. Кубиньи Г. В поисках новых соединений-лидеров для создания лекарств. Российский химический журнал 2006; 50(2): 5-17.

25. Veber D.F., Johnson S.R., Cheng H.Y. et al. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002; 45(12): 2615-23. DOI: 10.1021/jm020017n. PMID: 12036371.

26. Omran Z., Rauch C. Acid-mediated Lipinski’s second rule: application to drug design and targeting in cancer. Eur Biophys J 2014; 43(4-5): 199-206. DOI: 10.1007/s00249-014-0953-1. PMID: 24687685.


Review

For citations:


Apryshko G.N., Zhukova O.S., Fetisova L.V., Vlasenkova N.K., Pugacheva R.B., Goryunova O.V. In silico and in vitro research of potential antineoplastic amino acid derivatives of indolocarbazol glycosides properties. Russian Journal of Biotherapy. 2017;16(4):46-54. (In Russ.) https://doi.org/10.17650/1726-9784-2017-16-4-46-54

Views: 419


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)