Preview

Российский биотерапевтический журнал

Расширенный поиск

ВЛИЯНИЕ СЕКРЕТИРУЕМЫХ ОПУХОЛЬЮ ВЕЩЕСТВ НА ДЕНДРИТНЫЕ КЛЕТКИ ПРИ РАКЕ

https://doi.org/10.17650/1726-9784-2017-16-1-12-23

Полный текст:

Аннотация

Дендритные клетки играют уникальную и разнообразную роль в процессе онкогенеза и развития иммунного ответа на присутствие в организме опухолевых клеток. Дендритные клетки способны активно захватывать опухолевые антигены и представлять их Т-клеткам, вызывая тем самым опухолеспецифический Т-клеточный ответ. Кроме того, взаимодействие дендритных клеток с различными типами эффекторных клеток иммунной системы может усиливать клеточный и гуморальный ответ против рака. С другой стороны, ряд выделяемых опухолью факторов способен привлекать дендритные клетки в очаг неоплазии, нарушать их созревание, дифференцировку и функциональную активность, тем самым приводя к дефициту противоопухолевого иммунного ответа или опосредованной дендритными клетками толерантности организма к опухоли. Выявление факторов, которые в условиях опухолевого микроокружения оказывают стимулирующее либо подавляющее влияние на дендритные клетки, является важным этапом работы по улучшению методов биотерапии с использованием дендритных клеток; восстановление нормальных функций дендритных клеток у пациентов с раком является одной из основных задач иммунотерапии рака. В настоящем обзоре рассмотрены основные факторы, выделяемые опухолью, и их влияние на дендритные клетки в организме больных раком.

Об авторах

Антон Артурович Кескинов
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России; Университет г. Питтсбург
Россия


М. Р. Щурин
Университет г. Питтсбург
Россия


В. М. Бухман
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России
Россия


З. С. Шпрах
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России
Россия


Список литературы

1. Zhong H., Shurin M.R., Han B. Optimizing dendritic cell-based immunotherapy for cancer. Expert Rev Vaccines 2007; 6(3): 333-45. DOI: 10.1586/14760584.6.3.333. PMID: 17542749.

2. Ma Y., Shurin G.V., Gutkin D.W. et al. Tumor associated regulatory dendritic cells. Seminars in cancer biology 2012; 22(4): 298-306. DOI: 10.1016/j. semcancer. 2012.02.010. PMID: 22414911. PMCID: PMC3373995.

3. Shurin G.V., Ma Y., Shurin M.R. Immunosuppressive mechanisms of regulatory dendritic cells in cancer. Cancer microenvironment: official journal of the International Cancer Microenvironment Society 2013; 6(2): 159-67. DOI: 10.1007/s12307-013-0133-3. PMID: 23749739. PMCID: PMC3717058.

4. Ma Y., Shurin G.V., Peiyuan Z. et al. Dendritic cells in the cancer microenvironment. J Cancer 2013; 4(1): 36-44. DOI: 10.7150/jca. 5046. PMID: 23386903. PMCID: PMC3564245.

5. Shurin M.R., Naiditch H., Zhong H. et al. Regulatory dendritic cells: new targets for cancer immunotherapy. Cancer Biol & Ther 2011; 11(11): 988-92. PMID: 21474998.

6. Garg A.D., Dudek-Peric A.M., Romano E. et al. Immunogenic cell death. Int J Dev Biol 2015; 59(1-3): 131-40. DOI: 10.1387/ijdb. 150061pa. PMID: 26374534.

7. Bianchi M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 2007; 81(1): 1-5. DOI: 10.1189/jlb. 0306164. PMID: 17032697.

8. Sims G.P., Rowe D.C., Rietdijk S.T. et al. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 2010; 28: 367-88. DOI: 10.1146/annurev.immunol. 021908.132603. PMID: 20192808.

9. Saenz R., Futalan D., Leutenez L. et al. TLR4-dependent activation of dendritic cells by an HMGB1-derived peptide adjuvant. J Transl Med 2014; 12: 211. DOI: 10.1186/1479-5876-12-211. PMID: 25123824. PMCID: PMC4261565.

10. Saenz R., Messmer B., Futalan D. et al. Activity of the HMGB1-derived immunostimulatory peptide Hp91 resides in the helical C-terminal portion and is enhanced by dimerization. Mol Immunol 2014; 57(2): 191-9. DOI: 10.1016/j.molimm. 2013.09.007. PMID: 24172222. PMCID: PMC4520421.

11. Demoulin S., Herfs M., Somja J. et al. HMGB1 secretion during cervical carcinogenesis promotes the acquisition of a tolerogenic functionality by plasmacytoid dendritic cells. Int J Cancer 2015; 137(2): 345-58. DOI: 10.1002/ijc.29389. PMID: 25492101.

12. Chen B., Miller A.L., Rebelatto M. et al. S100A9 induced inflammatory responses are mediated by distinct damage associated molecular patterns(DAMP) receptors in vitro and in vivo. PLoS One 2015; 10(2): e0115828. DOI: 10.1371/journal.pone.0115828. PMID: 25706559. PMCID: PMC4338059.

13. Donato R., Cannon B.R., Sorci G. et al. Functions of S100 proteins. Curr Mol Med 2013; 13(1): 24-57. PMID: 22834835. PMCID: PMC3707951.

14. Lee T.H., Jang A.S., Park J.S. et al. Elevation of S100 calcium binding protein A9 in sputum of neutrophilic inflammation in severe uncontrolled asthma. Ann Allergy Asthma Immunol 2013; 111(4): 268-75 e1. DOI: 10.1016/j.anai.2013.06.028. PMID: 24054362.

15. Srikrishna G. S100A8 and S100A9: new insights into their roles in malignancy. J Innate Immun 2012; 4(1): 31 -40. DOI: 10.1159/000330095. PMID: 21912088. PMCID: PMC3250655.

16. Zhu L., Kohda F., Nakahara T. et al. Aberrant expression of S100A6 and matrix metalloproteinase 9, but not S100A2, S100A4, and S100A7, is associated with epidermal carcinogenesis. J Dermatol Sci 2013; 72(3): 311-9. DOI: 10.1016/j.jdermsci. 2013.07.005. PMID: 23993025.

17. Wang T., Liang Y., Thakur A. et al. Diagnostic significance of S100A2 and S100A6 levels in sera of patients with non-small cell lung cancer. Tumour Biol 2015. DOI: 10.1007/s13277-015-4057-z. PMID: 26361956.

18. Averill M.M., Barnhart S., Becker L. et al. S100A9 differentially modifies phenotypic states of neutrophils, macrophages, and dendritic cells: implications for atherosclerosis and adipose tissue inflammation. Circulation 2011; 123(11): 1216-26. DOI: 10.1161/CIRCULATIONAHA.110.985523. PMID: 21382888. PMCID: PMC3072335.

19. Bruhn S., Fang Y., Barrenas F. et al. A generally applicable translational strategy identifies S100A4 as a candidate gene in allergy. Sci Transl Med 2014; 6(218): 218ra4. DOI: 10.1126/scitranslmed.3007410. PMID: 24401939. PMCID: PMC4539009.

20. Ampie L., Choy W., Lamano J.B. et al. Heat shock protein vaccines against glioblastoma: from bench to bedside. J Neurooncol 2015; 123(3): 441-8. DOI: 10.1007/s11060-015-1837-7. PMID: 26093618. PMCID: PMC4520407.

21. Pawaria S., Binder R.J. CD91-dependent programming of T-helper cell responses following heat shock protein immunization. Nat Commun 2011; 2: 521. DOI: 10.1038/ncomms1524. PMID: 22045000. PMCID: PMC3356570.

22. Kuppner M.C., Gastpar R., Gelwer S. et al. The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur J Immunol 2001; 31(5): 1602-9. DOI: 10.1002/1521-4141(200105)31:5<1602::AID-IMMU1602>3.0.CO;2-W. PMID: 11465118.

23. Binder R.J., Srivastava P.K. Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol 2005; 6(6): 593-9. DOI: 10.1038/ni1201. PMID: 15864309.

24. Toi M., Matsumoto T., Bando H. Vascular endothelial growth factor: its prognostic, predictive, and therapeutic implications. Lancet Oncol 2001; 2(11): 667-73. DOI: 10.1016/S1470-2045(01) 00556-3. PMID: 11902537.

25. Gabrilovich D.I., Chen H.L., Girgis K.R. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 1996; 2(10): 1096-103. PMID: 8837607.

26. Shi Y., Yu P., Zeng D. et al. Suppression of vascular endothelial growth factor abrogates the immunosuppressive capability of murine gastric cancer cells and elicits antitumor immunity. FEBS J 2014; 281(17): 3882-93. DOI: 10.1111/febs.12923. PMID: 25041128.

27. Della Porta M., Danova M., Rigolin G.M. et al. Dendritic cells and vascular endothelial growth factor in colorectal cancer: correlations with clinicobiological findings. Oncology 2005; 68(2-3): 276-84. DOI: 10.1159/000086784. PMID: 16015045.

28. Kim R., Emi M., Tanabe K. et al. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 2006; 66(11): 5527-36. DOI: 10.1158/0008-5472. CAN-054128. PMID: 16740684.

29. Fricke I., Mirza N., Dupont J. et al. Vascular endothelial growth factor-trap overcomes defects in dendritic cell differentiation but does not improve antigen-specific immune responses. Clin Cancer Res 2007; 13(16): 4840-8. DOI: 10.1158/1078-0432. CCR-07-0409. PMID: 17699863.

30. Wang H., Zhang L., Zhang S. et al. Inhibition of vascular endothelial growth factor by small interfering RNA upregulates differentiation, maturation and function of dendritic cells. Exp Ther Med 2015; 9(1): 120-4. DOI: 10.3892/etm.2014.2059. PMID: 25452786. PMCID: 4247311.

31. Seeger P., Musso T., Sozzani S. The TGF-beta superfamily in dendritic cell biology. Cytokine Growth Factor Rev 2015; 26(6): 647-57. DOI: 10.1016/j.cytogfr. 2015.06.002. PMID: 26115564.

32. Brown R.D., Pope B., Murray A. et al. Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80(B7-1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-beta1 and interleukin-10. Blood 2001; 98(10): 2992-8. PMID: 11698282.

33. Kel J.M., Girard-Madoux M.J., Reizis B. et al. TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis. J Immunol 2010; 185(6): 3248-55. DOI: 10.4049/jimmunol.1000981. PMID: 20713882.

34. Lievens D., Habets K.L., Robertson A.K. et al. Abrogated transforming growth factor beta receptor II (TGFbetaRII) signalling in dendritic cells promotes immune reactivity of T cells resulting in enhanced atherosclerosis. Eur Heart J 2013; 34(48): 3717-27. DOI: 10.1093/eurheartj/ehs106. PMID: 22613345. PMCID: 3869966.

35. Ito M., Minamiya Y., Kawai H. et al. Tumor-derived TGFbeta-1 induces dendritic cell apoptosis in the sentinel lymph node. J Immunol 2006; 176(9): 5637-43. PMID: 16622033.

36. Song S., Yuan P., Wu H. et al. Dendritic cells with an increased PD-L1 by TGF-beta induce T cell anergy for the cytotoxicity of hepatocellular carcinoma cells. Int Immunopharmacol 2014; 20(1): 117-23. DOI: 10.1016/j.intimp. 2014.02.027. PMID: 24606770.

37. Zhou Z., Li W., Song Y. et al. Growth differentiation factor-15 suppresses maturation and function of dendritic cells and inhibits tumor-specific immune response. PLoS One 2013; 8(11): e78618. DOI: 10.1371/journal.pone. 0078618. PMID: 24236027. MCID: PMC3827235.

38. Smith D.R., Kunkel S.L., Burdick M.D. et al. Production of interleukin-10 by human bronchogenic carcinoma. Am J Pathol 1994; 145(1): 18-25. PMID: 8030748. PMCID: 1887307.

39. Gu Z.J., Costes V., Lu Z.Y. et al. Interleukin-10 is a growth factor for human myeloma cells by induction of an oncostatin M autocrine loop. Blood 1996; 88(10): 3972-86. PMID: 8916964.

40. Kim K.D., Lim H.Y., Lee H.G. et al. Apolipoprotein A-I induces IL-10 and PGE2 production in human monocytes and inhibits dendritic cell differentiation and maturation. Biochem Biophys Res Commun 2005; 338(2): 1126-36. DOI: 10.1016/j. bbrc. 2005.10.065. PMID: 16259956.

41. Beckebaum S., Zhang X., Chen X. et al. Increased levels of interleukin-10 in serum from patients with hepatocellular carcinoma correlate with profound numerical deficiencies and immature phenotype of circulating dendritic cell subsets. Clin Cancer Res 2004; 10(21): 7260-9. DOI: 10.1158/1078-0432.CCR-04-0872. PMID: 15534100.

42. Williams L.M., Ricchetti G., Sarma U. et al. Interleukin-10 suppression of myeloid cell activation--a continuing puzzle. Immunology 2004; 113(3): 281-92. DOI: 10.1111/j.1365-2567.2004.01988. x. PMID: 15500614. PMCID: 1782589.

43. Shurin M.R., Shurin G.V., Lokshin A. et al. Intratumoral cytokines/ chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 2006; 25(3): 333-56. PMID: 17029028.

44. Hirano T. Interleukin 6 and its receptor: ten years later. Int Rev Immunol. 1998; 16(3-4): 249-84. DOI: 10.3109/08830189809042997. PMID: 9505191.

45. Nishio H., Yaguchi T., Sugiyama J. et al. Immunosuppression through constitutively activated NF-kappaB signalling in human ovarian cancer and its reversal by an NF-kappaB inhibitor. Br J Cancer 2014; 110(12): 2965-74. DOI: 10.1038/bjc. 2014.251. PMID: 24867687. PMCID: PMC4056060.

46. Alshamsan A. Induction of tolerogenic dendritic cells by IL-6-secreting CT26 colon carcinoma. Immunopharmacol Immunotoxicol 2012; 34(3): 465-9. DOI: 10.3109/08923973.2011.625034. PMID: 21999714.

47. Oosterhoff D., Lougheed S., van de Ven R. et al. Tumor-mediated inhibition of human dendritic cell differentiation and function is consistently counteracted by combined p38 MAPK and STAT3 inhibition. Oncoimmunology 2012; 1(5): 649-58. DOI: 10.4161/onci. 20365. PMID: 22934257. PMCID: PMC3429569.

48. Yang L., Wu Q., Xu L. et al. Increased expression of colony stimulating factor-1 is a predictor of poor prognosis in patients with clear-cell renal cell carcinoma. BMC Cancer 2015; 15: 67. DOI: 10.1186/s12885-015-1076-5. PMID: 25886010. PMCID: PMC4339479.

49. Lin E.Y., Gouon-Evans V., Nguyen A.V. et al. The macrophage growth factor CSF-1 in mammary gland development and tumor progression. J Mammary Gland Biol Neoplasia 2002; 7(2): 147-62. PMID: 12465600.

50. Demoulin S.A., Somja J., Duray A. et al. Cervical(pre) neoplastic microenvironment promotes the emergence of tolerogenic dendritic cells via RANKL secretion. Oncoimmunology 2015; 4(6): e1008334. DOI: 10.1080/2162402X.2015.1008334. PMID: 26155412. PMCID: PMC4485731.

51. Perrot I., Blanchard D., Freymond N. et al. Dendritic cells infiltrating human non-small cell lung cancer are blocked at immature stage. J Immunol 2007; 178(5): 2763-9. PMID: 17312119.

52. Zou W., Machelon V., Coulomb-L’Hermin A. et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 2001; 7(12): 1339-46. PMID: 11726975.

53. Hargadon K.M., Bishop J.D., Brandt J.P. et al. Melanoma-derived factors alter the maturation and activation of differentiated tissue-resident dendritic cells. Immunol Cell Biol 2016; 94(1): 24-38. DOI: 10.1038/icb.2015.58. PMID: 26010746.

54. Aalamian M., Tourkova I. L., Chatta G.S. et al. Inhibition of dendropoiesis by tumor derived and purified prostate specific antigen. J Urol 2003; 170(5): 2026-30. PMID: 14532846.

55. Aalamian-Matheis M., Chatta G.S., Shurin M.R. et al. Inhibition of dendritic cell generation and function by serum from prostate cancer patients: correlation with serum-free PSA. Adv Exp Med Biol 2007; 601: 173-82. PMID: 17713004.

56. Pillai K., Pourgholami M.H., Chua T.C. et al. MUC1 as a potential target in anticancer therapies. Am J Clin Oncol 2015; 38(1): 108-18. DOI: 10.1097/COC.0b013e31828f5a07. PMID: 23608828.

57. Carlos C.A., Dong H.F., Howard O.M. et al. Human tumor antigen MUC1 is chemotactic for immature dendritic cells and elicits maturation but does not promote Th1 type immunity. J Immunol 2005; 175(3): 1628-35. PMID: 16034102.

58. Rughetti A., Pellicciotta I., Biffoni M. et al. Recombinant tumor-associated MUC1 glycoprotein impairs the differentiation and function of dendritic cells. J Immunol 2005; 174(12): 7764-72. PMID: 15944279.

59. Ueno A., Cho S., Cheng L. et al. Transient upregulation of indoleamine 2,3-dioxygenase in dendritic cells by human chorionic gonadotropin downregulates autoimmune diabetes. Diabetes 2007; 56(6): 1686-93. DOI: 10.2337/db06-1727. PMID: 17360980.

60. Hwu P., Du M.X., Lapointe R. et al. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 2000; 164(7): 3596-9. DOI: ji_v164n7p3596[pii]. PMID: 10725715.

61. Palmano K., Rowan A., Guillermo R. et al. The role of gangliosides in neurodevelopment. Nutrients 2015; 7(5): 3891-913. DOI: 10.3390/nu7053891. PMID: 26007338. PMCID: PMC4446785.

62. Shurin G.V., Shurin M.R., Bykovskaia S. et al. Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res 2001; 61(1): 363-9. PMID: 11196188.

63. Peguet-Navarro J., Sportouch M., Popa I. et al. Gangliosides from human melanoma tumors impair dendritic cell differentiation from monocytes and induce their apoptosis. J Immunol 2003; 170(7): 3488-94. PMID: 12646609.

64. Bennaceur K., Popa I., Chapman J.A. et al. Different mechanisms are involved in apoptosis induced by melanoma gangliosides on human monocyte-derived dendritic cells. Glycobiology 2009; 19(6): 576-82. DOI: 10.1093/glycob/cwp015. PMID: 19240275. PMCID: PMC2682607.

65. Pugh S., Thomas G.A. Patients with adenomatous polyps and carcinomas have increased colonic mucosal prostaglandin E2. Gut 1994; 35(5): 675-8. PMID: 8200564. PMCID: PMC1374755.

66. Sombroek C.C., Stam A.G., Masterson A.J. et al. Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J Immunol 2002; 168(9): 4333-43. PMID: 11970975.

67. Trabanelli S., Lecciso M., Salvestrini V. et al. PGE2-induced IDO1 inhibits the capacity of fully mature DCs to elicit an in vitro antileukemic immune response. J Immunol Res 2015; 2015: 253191. DOI: 10.1155/2015/253191. PMID: 25815345. PMCID: PMC4357138.

68. Schipper R.G., Romijn J.C., Cuijpers V.M. et al. Polyamines and prostatic cancer. Biochem Soc Trans 2003; 31(2): 375-80. DOI: 10.1042/bst0310375 PMID: 12653642.

69. Erbas H., Bal O., Cakir E. Effect of rosuvastatin on arginase enzyme activity and polyamine production in experimental breast cancer. Balkan Med J 2015; 32(1): 89-95. DOI: 10.5152/balkanmedj. 2015.15611. PMID: 25759778. PMCID: PMC4342145.

70. Della Bella S., Gennaro M., Vaccari M. et al. Altered maturation of peripheral blood dendritic cells in patients with breast cancer. Br J Cancer 2003; 89(8): 1463-72. PMID: 14562018.

71. Doherty J.R., Cleveland J.L. Targeting lactate metabolism for cancer therapeutics. J Clin Invest 2013; 123(9): 3685-92. DOI: 10.1172/JCI69741. PMID: 23999443. PMCID: PMC3754272.

72. Gottfried E., Kunz-Schughart L.A., Ebner S. et al. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 2006; 107(5): 2013-21. DOI: 10.1182/blood-2005-05-1795. PMID: 16278308.

73. Nasi A., Fekete T., Krishnamurthy A. et al. Dendritic cell reprogramming by endogenously produced lactic acid. J Immunol 2013; 191(6): 3090-9. DOI: 10.4049/jimmunol.1300772. PMID: 23956421.

74. Vaupel P., Mayer A. Hypoxia-Driven Adenosine Accumulation: A Crucial Microenvironmental Factor Promoting Tumor Progression. Adv Exp Med Biol 2016; 876: 177-83. DOI: 10.1007/978-1-4939-3023-4_22. PMID: 26782210.

75. Liang D., Zuo A., Shao H. et al. A2B adenosine receptor activation switches differentiation of bone marrow cells to a CD11c(+) Gr-1(+) dendritic cell subset that promotes the Th17 response. Immun Inflamm Dis 2015; 3(4): 360-73. DOI: 10.1002/iid3.74. PMID: 26734458. PMCID: PMC4693722.

76. Novitskiy S.V., Ryzhov S., Zaynagetdinov R. et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 2008; 112(5): 1822-31. DOI: 10.1182/blood-2008-02-136325. PMID: 18559975. PMCID: PMC2518889.

77. Dong H., Bullock T.N. Metabolic influences that regulate dendritic cell function in tumors. Front Immunol 2014; 5: 24. DOI: 10.3389/fimmu.2014.00024. PMID: 24523723. PMCID: PMC3906600.

78. Herber D.L., Cao W., Nefedova Y. et al. Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med 2010; 16(8): 880-6. DOI: 10.1038/nm. 2172. PMID: 20622859. PMCID: PMC2917488.

79. Gardner J.K., Mamotte C.D., Patel P. et al. Mesothelioma tumor cells modulate dendritic cell lipid content, phenotype and function. PLoS One 2015; 10(4): e0123563. DOI: 10.1371/journal.pone.0123563. PMID: 25886502. PMCID: PMC4401725.

80. Gao F., Liu C., Guo J. et al. Radiation-driven lipid accumulation and dendritic cell dysfunction in cancer. Sci Rep 2015; 5: 9613. DOI: 10.1038/srep09613. PMID: 25923834. PMCID: PMC4413852.

81. Cubillos-Ruiz J.R., Silberman P.C., Rutkowski M.R. et al. ER Stress Sensor XBP1 Controls Anti-tumor Immunity by Disrupting Dendritic Cell Homeostasis. Cell 2015; 161(7): 1527-38. DOI: 10.1016/j. cell. 2015.05.025.PMID: 26073941. PMCID: PMC4580135.

82. Wu R., Zhang Q.H., Lu YJ. et al. Involvement of the IRE1alpha-XBP1 pathway and XBP1s-dependent transcriptional reprogramming in metabolic diseases. DNA Cell Biol 2015; 34(1): 6-18. DOI: 10.1089/dna.2014.2552. PMID: 25216212. PMCID: PMC4281841.

83. Scanlon C.S., Banerjee R., Inglehart R.C. et al. Galanin modulates the neural niche to favour perineural invasion in head and neck cancer. Nat Commun 2015; 6: 6885. DOI: 10.1038/ncomms7885. PMID: 25917569. PMCID: PMC4476386.

84. Covenas R., Munoz M. Cancer progression and substance P. Histol Histopathol 2014; 29(7): 881-90. PMID: 24535838.

85. Voedisch S., Rochlitzer S., Veres T.Z. et al. Neuropeptides control the dynamic behavior of airway mucosal dendritic cells. PLoS One 2012; 7(9): e45951. DOI: 10.1371/journal.pone.0045951. PMID: 23049899. PMCID: PMC3458805.

86. Gilaberte Y., Roca M.J., Garcia-Prats M.D. et al. Neuropeptide Y expression in cutaneous melanoma. J Am Acad Dermatol 2012; 66(6): e201-8. DOI: 10.1016/j.jaad.2011.02.015. PMID: 21620518.

87. Buttari B., Profumo E., Domenici G. et al. Neuropeptide Y induces potent migration of human immature dendritic cells and promotes a Th2 polarization. FASEB J 2014; 28(7): 3038-49. DOI: 10.1096/fj. 13-243485. PMID: 24699455.

88. Makarenkova V.P., Shurin G.V., Tourkova I.L. et al. Lung cancer-derived bombesin-like peptides down-regulate the generation and function of human dendritic cells. J Neuroimmunol 2003; 145(1-2): 55-67. PMID: 14644031.

89. DeRosa D.C., Ryan P.J., Okragly A. et al. Tumor-derived death receptor 6 modulates dendritic cell development. Cancer Immunol Immunother 2008; 57(6): 777-87. DOI: 10.1007/s00262-007-0413-1. PMID: 17962943.

90. Valenti R., Huber V., Filipazzi P. et al. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 2006; 66(18): 9290-8. DOI: 10.1158/0008-5472.CAN-06-1819. PMID: 16982774.

91. Huang S.H., Li Y., Zhang J. et al. Epidermal growth factor receptor-containing exosomes induce tumor-specific regulatory T cells. Cancer Invest 2013; 31(5): 330-5. DOI: 10.3109/07357907.2013.789905. PMID: 23614656.

92. Ding G., Zhou L., Qian Y. et al. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget 2015; 6(30): 29877-88. DOI: 10.18632/oncotarget. 4924. PMID: 26337469.

93. Ring S., Pushkarevskaya A., Schild H. et al. Regulatory T cell-derived adenosine induces dendritic cell migration through the Epac-Rap1 pathway. J Immunol 2015; 194(8): 3735-44. DOI: 10.4049/jimmunol. 1401434. PMID: 25780038.

94. Feijoo E., Alfaro C., Mazzolini G. et al. Dendritic cells delivered inside human carcinomas are sequestered by interleukin-8. Int J Cancer 2005; 116(2): 275-81. DOI: 10.1002/ijc.21046. PMID: 15800914.

95. Shurin M.R., Yurkovetsky Z.R., Tourkova I.L. et al. Inhibition of CD40 expression and CD40-mediated dendritic cell function by tumor-derived IL-10. Int J Cancer 2002; 101(1): 61-8. DOI: 10.1002/ijc.10576. PMID: 12209589.

96. Schwarz A.M., Banning-Eichenseer U., Seidel K. et al. Impact of interleukin-10 on phenotype and gene expression during early monocyte differentiation into dendritic cells. Anticancer Res 2013; 33(11): 4791-8. PMID: 24222115.

97. Lo A.S., Gorak-Stolinska P., Bachy V. et al. Modulation of dendritic cell differentiation by colony-stimulating factor-1: role of phosphatidylinositol 3’-kinase and delayed caspase activation. J Leukoc Biol 2007; 82(6): 1446-54. DOI: 10.1189/jlb.0307142. PMID: 17855501.

98. Yang L., Yamagata N., Yadav R. et al. Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. J Clin Invest 2003; 111(5): 727-35. DOI: 10.1172/JCI16492. PMID: 12618527. PMCID: PMC151895.

99. Stoitzner P., Green L.K., Jung J.Y. et al. Inefficient presentation of tumor-derived antigen by tumor-infiltrating dendritic cells. Cancer Immunol Immunother 2008; 57(11): 1665-73. DOI: 10.1007/s00262-008-0487-4. PMID: 18311487.

100. Teicher B.A., Fricker S.P. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clinical cancer research: an official journal of the American Association for Cancer Research 2010; 16(11): 2927-31. DOI: 10.1158/1078-0432. CCR-09-2329. PMID: 20484021.


Для цитирования:


Кескинов А.А., Щурин М.Р., Бухман В.М., Шпрах З.С. ВЛИЯНИЕ СЕКРЕТИРУЕМЫХ ОПУХОЛЬЮ ВЕЩЕСТВ НА ДЕНДРИТНЫЕ КЛЕТКИ ПРИ РАКЕ. Российский биотерапевтический журнал. 2017;16(1):12-23. https://doi.org/10.17650/1726-9784-2017-16-1-12-23

For citation:


Keskinov A.A., Shurin M.R., Bukhman V.M., Shprakh Z.S. IMPACT OF TUMOR-DERIVED FACTORS ON DENDRITIC CELLS IN CANCER. Russian Journal of Biotherapy. 2017;16(1):12-23. (In Russ.) https://doi.org/10.17650/1726-9784-2017-16-1-12-23

Просмотров: 69


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)