ВЛИЯНИЕ СЕКРЕТИРУЕМЫХ ОПУХОЛЬЮ ВЕЩЕСТВ НА ДЕНДРИТНЫЕ КЛЕТКИ ПРИ РАКЕ
https://doi.org/10.17650/1726-9784-2017-16-1-12-23
Аннотация
Об авторах
Антон Артурович КескиновРоссия
М. Р. Щурин
Россия
В. М. Бухман
Россия
З. С. Шпрах
Россия
Список литературы
1. Zhong H., Shurin M.R., Han B. Optimizing dendritic cell-based immunotherapy for cancer. Expert Rev Vaccines 2007; 6(3): 333-45. DOI: 10.1586/14760584.6.3.333. PMID: 17542749.
2. Ma Y., Shurin G.V., Gutkin D.W. et al. Tumor associated regulatory dendritic cells. Seminars in cancer biology 2012; 22(4): 298-306. DOI: 10.1016/j. semcancer. 2012.02.010. PMID: 22414911. PMCID: PMC3373995.
3. Shurin G.V., Ma Y., Shurin M.R. Immunosuppressive mechanisms of regulatory dendritic cells in cancer. Cancer microenvironment: official journal of the International Cancer Microenvironment Society 2013; 6(2): 159-67. DOI: 10.1007/s12307-013-0133-3. PMID: 23749739. PMCID: PMC3717058.
4. Ma Y., Shurin G.V., Peiyuan Z. et al. Dendritic cells in the cancer microenvironment. J Cancer 2013; 4(1): 36-44. DOI: 10.7150/jca. 5046. PMID: 23386903. PMCID: PMC3564245.
5. Shurin M.R., Naiditch H., Zhong H. et al. Regulatory dendritic cells: new targets for cancer immunotherapy. Cancer Biol & Ther 2011; 11(11): 988-92. PMID: 21474998.
6. Garg A.D., Dudek-Peric A.M., Romano E. et al. Immunogenic cell death. Int J Dev Biol 2015; 59(1-3): 131-40. DOI: 10.1387/ijdb. 150061pa. PMID: 26374534.
7. Bianchi M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 2007; 81(1): 1-5. DOI: 10.1189/jlb. 0306164. PMID: 17032697.
8. Sims G.P., Rowe D.C., Rietdijk S.T. et al. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 2010; 28: 367-88. DOI: 10.1146/annurev.immunol. 021908.132603. PMID: 20192808.
9. Saenz R., Futalan D., Leutenez L. et al. TLR4-dependent activation of dendritic cells by an HMGB1-derived peptide adjuvant. J Transl Med 2014; 12: 211. DOI: 10.1186/1479-5876-12-211. PMID: 25123824. PMCID: PMC4261565.
10. Saenz R., Messmer B., Futalan D. et al. Activity of the HMGB1-derived immunostimulatory peptide Hp91 resides in the helical C-terminal portion and is enhanced by dimerization. Mol Immunol 2014; 57(2): 191-9. DOI: 10.1016/j.molimm. 2013.09.007. PMID: 24172222. PMCID: PMC4520421.
11. Demoulin S., Herfs M., Somja J. et al. HMGB1 secretion during cervical carcinogenesis promotes the acquisition of a tolerogenic functionality by plasmacytoid dendritic cells. Int J Cancer 2015; 137(2): 345-58. DOI: 10.1002/ijc.29389. PMID: 25492101.
12. Chen B., Miller A.L., Rebelatto M. et al. S100A9 induced inflammatory responses are mediated by distinct damage associated molecular patterns(DAMP) receptors in vitro and in vivo. PLoS One 2015; 10(2): e0115828. DOI: 10.1371/journal.pone.0115828. PMID: 25706559. PMCID: PMC4338059.
13. Donato R., Cannon B.R., Sorci G. et al. Functions of S100 proteins. Curr Mol Med 2013; 13(1): 24-57. PMID: 22834835. PMCID: PMC3707951.
14. Lee T.H., Jang A.S., Park J.S. et al. Elevation of S100 calcium binding protein A9 in sputum of neutrophilic inflammation in severe uncontrolled asthma. Ann Allergy Asthma Immunol 2013; 111(4): 268-75 e1. DOI: 10.1016/j.anai.2013.06.028. PMID: 24054362.
15. Srikrishna G. S100A8 and S100A9: new insights into their roles in malignancy. J Innate Immun 2012; 4(1): 31 -40. DOI: 10.1159/000330095. PMID: 21912088. PMCID: PMC3250655.
16. Zhu L., Kohda F., Nakahara T. et al. Aberrant expression of S100A6 and matrix metalloproteinase 9, but not S100A2, S100A4, and S100A7, is associated with epidermal carcinogenesis. J Dermatol Sci 2013; 72(3): 311-9. DOI: 10.1016/j.jdermsci. 2013.07.005. PMID: 23993025.
17. Wang T., Liang Y., Thakur A. et al. Diagnostic significance of S100A2 and S100A6 levels in sera of patients with non-small cell lung cancer. Tumour Biol 2015. DOI: 10.1007/s13277-015-4057-z. PMID: 26361956.
18. Averill M.M., Barnhart S., Becker L. et al. S100A9 differentially modifies phenotypic states of neutrophils, macrophages, and dendritic cells: implications for atherosclerosis and adipose tissue inflammation. Circulation 2011; 123(11): 1216-26. DOI: 10.1161/CIRCULATIONAHA.110.985523. PMID: 21382888. PMCID: PMC3072335.
19. Bruhn S., Fang Y., Barrenas F. et al. A generally applicable translational strategy identifies S100A4 as a candidate gene in allergy. Sci Transl Med 2014; 6(218): 218ra4. DOI: 10.1126/scitranslmed.3007410. PMID: 24401939. PMCID: PMC4539009.
20. Ampie L., Choy W., Lamano J.B. et al. Heat shock protein vaccines against glioblastoma: from bench to bedside. J Neurooncol 2015; 123(3): 441-8. DOI: 10.1007/s11060-015-1837-7. PMID: 26093618. PMCID: PMC4520407.
21. Pawaria S., Binder R.J. CD91-dependent programming of T-helper cell responses following heat shock protein immunization. Nat Commun 2011; 2: 521. DOI: 10.1038/ncomms1524. PMID: 22045000. PMCID: PMC3356570.
22. Kuppner M.C., Gastpar R., Gelwer S. et al. The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur J Immunol 2001; 31(5): 1602-9. DOI: 10.1002/1521-4141(200105)31:5<1602::AID-IMMU1602>3.0.CO;2-W. PMID: 11465118.
23. Binder R.J., Srivastava P.K. Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol 2005; 6(6): 593-9. DOI: 10.1038/ni1201. PMID: 15864309.
24. Toi M., Matsumoto T., Bando H. Vascular endothelial growth factor: its prognostic, predictive, and therapeutic implications. Lancet Oncol 2001; 2(11): 667-73. DOI: 10.1016/S1470-2045(01) 00556-3. PMID: 11902537.
25. Gabrilovich D.I., Chen H.L., Girgis K.R. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 1996; 2(10): 1096-103. PMID: 8837607.
26. Shi Y., Yu P., Zeng D. et al. Suppression of vascular endothelial growth factor abrogates the immunosuppressive capability of murine gastric cancer cells and elicits antitumor immunity. FEBS J 2014; 281(17): 3882-93. DOI: 10.1111/febs.12923. PMID: 25041128.
27. Della Porta M., Danova M., Rigolin G.M. et al. Dendritic cells and vascular endothelial growth factor in colorectal cancer: correlations with clinicobiological findings. Oncology 2005; 68(2-3): 276-84. DOI: 10.1159/000086784. PMID: 16015045.
28. Kim R., Emi M., Tanabe K. et al. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 2006; 66(11): 5527-36. DOI: 10.1158/0008-5472. CAN-054128. PMID: 16740684.
29. Fricke I., Mirza N., Dupont J. et al. Vascular endothelial growth factor-trap overcomes defects in dendritic cell differentiation but does not improve antigen-specific immune responses. Clin Cancer Res 2007; 13(16): 4840-8. DOI: 10.1158/1078-0432. CCR-07-0409. PMID: 17699863.
30. Wang H., Zhang L., Zhang S. et al. Inhibition of vascular endothelial growth factor by small interfering RNA upregulates differentiation, maturation and function of dendritic cells. Exp Ther Med 2015; 9(1): 120-4. DOI: 10.3892/etm.2014.2059. PMID: 25452786. PMCID: 4247311.
31. Seeger P., Musso T., Sozzani S. The TGF-beta superfamily in dendritic cell biology. Cytokine Growth Factor Rev 2015; 26(6): 647-57. DOI: 10.1016/j.cytogfr. 2015.06.002. PMID: 26115564.
32. Brown R.D., Pope B., Murray A. et al. Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80(B7-1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-beta1 and interleukin-10. Blood 2001; 98(10): 2992-8. PMID: 11698282.
33. Kel J.M., Girard-Madoux M.J., Reizis B. et al. TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis. J Immunol 2010; 185(6): 3248-55. DOI: 10.4049/jimmunol.1000981. PMID: 20713882.
34. Lievens D., Habets K.L., Robertson A.K. et al. Abrogated transforming growth factor beta receptor II (TGFbetaRII) signalling in dendritic cells promotes immune reactivity of T cells resulting in enhanced atherosclerosis. Eur Heart J 2013; 34(48): 3717-27. DOI: 10.1093/eurheartj/ehs106. PMID: 22613345. PMCID: 3869966.
35. Ito M., Minamiya Y., Kawai H. et al. Tumor-derived TGFbeta-1 induces dendritic cell apoptosis in the sentinel lymph node. J Immunol 2006; 176(9): 5637-43. PMID: 16622033.
36. Song S., Yuan P., Wu H. et al. Dendritic cells with an increased PD-L1 by TGF-beta induce T cell anergy for the cytotoxicity of hepatocellular carcinoma cells. Int Immunopharmacol 2014; 20(1): 117-23. DOI: 10.1016/j.intimp. 2014.02.027. PMID: 24606770.
37. Zhou Z., Li W., Song Y. et al. Growth differentiation factor-15 suppresses maturation and function of dendritic cells and inhibits tumor-specific immune response. PLoS One 2013; 8(11): e78618. DOI: 10.1371/journal.pone. 0078618. PMID: 24236027. MCID: PMC3827235.
38. Smith D.R., Kunkel S.L., Burdick M.D. et al. Production of interleukin-10 by human bronchogenic carcinoma. Am J Pathol 1994; 145(1): 18-25. PMID: 8030748. PMCID: 1887307.
39. Gu Z.J., Costes V., Lu Z.Y. et al. Interleukin-10 is a growth factor for human myeloma cells by induction of an oncostatin M autocrine loop. Blood 1996; 88(10): 3972-86. PMID: 8916964.
40. Kim K.D., Lim H.Y., Lee H.G. et al. Apolipoprotein A-I induces IL-10 and PGE2 production in human monocytes and inhibits dendritic cell differentiation and maturation. Biochem Biophys Res Commun 2005; 338(2): 1126-36. DOI: 10.1016/j. bbrc. 2005.10.065. PMID: 16259956.
41. Beckebaum S., Zhang X., Chen X. et al. Increased levels of interleukin-10 in serum from patients with hepatocellular carcinoma correlate with profound numerical deficiencies and immature phenotype of circulating dendritic cell subsets. Clin Cancer Res 2004; 10(21): 7260-9. DOI: 10.1158/1078-0432.CCR-04-0872. PMID: 15534100.
42. Williams L.M., Ricchetti G., Sarma U. et al. Interleukin-10 suppression of myeloid cell activation--a continuing puzzle. Immunology 2004; 113(3): 281-92. DOI: 10.1111/j.1365-2567.2004.01988. x. PMID: 15500614. PMCID: 1782589.
43. Shurin M.R., Shurin G.V., Lokshin A. et al. Intratumoral cytokines/ chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 2006; 25(3): 333-56. PMID: 17029028.
44. Hirano T. Interleukin 6 and its receptor: ten years later. Int Rev Immunol. 1998; 16(3-4): 249-84. DOI: 10.3109/08830189809042997. PMID: 9505191.
45. Nishio H., Yaguchi T., Sugiyama J. et al. Immunosuppression through constitutively activated NF-kappaB signalling in human ovarian cancer and its reversal by an NF-kappaB inhibitor. Br J Cancer 2014; 110(12): 2965-74. DOI: 10.1038/bjc. 2014.251. PMID: 24867687. PMCID: PMC4056060.
46. Alshamsan A. Induction of tolerogenic dendritic cells by IL-6-secreting CT26 colon carcinoma. Immunopharmacol Immunotoxicol 2012; 34(3): 465-9. DOI: 10.3109/08923973.2011.625034. PMID: 21999714.
47. Oosterhoff D., Lougheed S., van de Ven R. et al. Tumor-mediated inhibition of human dendritic cell differentiation and function is consistently counteracted by combined p38 MAPK and STAT3 inhibition. Oncoimmunology 2012; 1(5): 649-58. DOI: 10.4161/onci. 20365. PMID: 22934257. PMCID: PMC3429569.
48. Yang L., Wu Q., Xu L. et al. Increased expression of colony stimulating factor-1 is a predictor of poor prognosis in patients with clear-cell renal cell carcinoma. BMC Cancer 2015; 15: 67. DOI: 10.1186/s12885-015-1076-5. PMID: 25886010. PMCID: PMC4339479.
49. Lin E.Y., Gouon-Evans V., Nguyen A.V. et al. The macrophage growth factor CSF-1 in mammary gland development and tumor progression. J Mammary Gland Biol Neoplasia 2002; 7(2): 147-62. PMID: 12465600.
50. Demoulin S.A., Somja J., Duray A. et al. Cervical(pre) neoplastic microenvironment promotes the emergence of tolerogenic dendritic cells via RANKL secretion. Oncoimmunology 2015; 4(6): e1008334. DOI: 10.1080/2162402X.2015.1008334. PMID: 26155412. PMCID: PMC4485731.
51. Perrot I., Blanchard D., Freymond N. et al. Dendritic cells infiltrating human non-small cell lung cancer are blocked at immature stage. J Immunol 2007; 178(5): 2763-9. PMID: 17312119.
52. Zou W., Machelon V., Coulomb-L’Hermin A. et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 2001; 7(12): 1339-46. PMID: 11726975.
53. Hargadon K.M., Bishop J.D., Brandt J.P. et al. Melanoma-derived factors alter the maturation and activation of differentiated tissue-resident dendritic cells. Immunol Cell Biol 2016; 94(1): 24-38. DOI: 10.1038/icb.2015.58. PMID: 26010746.
54. Aalamian M., Tourkova I. L., Chatta G.S. et al. Inhibition of dendropoiesis by tumor derived and purified prostate specific antigen. J Urol 2003; 170(5): 2026-30. PMID: 14532846.
55. Aalamian-Matheis M., Chatta G.S., Shurin M.R. et al. Inhibition of dendritic cell generation and function by serum from prostate cancer patients: correlation with serum-free PSA. Adv Exp Med Biol 2007; 601: 173-82. PMID: 17713004.
56. Pillai K., Pourgholami M.H., Chua T.C. et al. MUC1 as a potential target in anticancer therapies. Am J Clin Oncol 2015; 38(1): 108-18. DOI: 10.1097/COC.0b013e31828f5a07. PMID: 23608828.
57. Carlos C.A., Dong H.F., Howard O.M. et al. Human tumor antigen MUC1 is chemotactic for immature dendritic cells and elicits maturation but does not promote Th1 type immunity. J Immunol 2005; 175(3): 1628-35. PMID: 16034102.
58. Rughetti A., Pellicciotta I., Biffoni M. et al. Recombinant tumor-associated MUC1 glycoprotein impairs the differentiation and function of dendritic cells. J Immunol 2005; 174(12): 7764-72. PMID: 15944279.
59. Ueno A., Cho S., Cheng L. et al. Transient upregulation of indoleamine 2,3-dioxygenase in dendritic cells by human chorionic gonadotropin downregulates autoimmune diabetes. Diabetes 2007; 56(6): 1686-93. DOI: 10.2337/db06-1727. PMID: 17360980.
60. Hwu P., Du M.X., Lapointe R. et al. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 2000; 164(7): 3596-9. DOI: ji_v164n7p3596[pii]. PMID: 10725715.
61. Palmano K., Rowan A., Guillermo R. et al. The role of gangliosides in neurodevelopment. Nutrients 2015; 7(5): 3891-913. DOI: 10.3390/nu7053891. PMID: 26007338. PMCID: PMC4446785.
62. Shurin G.V., Shurin M.R., Bykovskaia S. et al. Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res 2001; 61(1): 363-9. PMID: 11196188.
63. Peguet-Navarro J., Sportouch M., Popa I. et al. Gangliosides from human melanoma tumors impair dendritic cell differentiation from monocytes and induce their apoptosis. J Immunol 2003; 170(7): 3488-94. PMID: 12646609.
64. Bennaceur K., Popa I., Chapman J.A. et al. Different mechanisms are involved in apoptosis induced by melanoma gangliosides on human monocyte-derived dendritic cells. Glycobiology 2009; 19(6): 576-82. DOI: 10.1093/glycob/cwp015. PMID: 19240275. PMCID: PMC2682607.
65. Pugh S., Thomas G.A. Patients with adenomatous polyps and carcinomas have increased colonic mucosal prostaglandin E2. Gut 1994; 35(5): 675-8. PMID: 8200564. PMCID: PMC1374755.
66. Sombroek C.C., Stam A.G., Masterson A.J. et al. Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J Immunol 2002; 168(9): 4333-43. PMID: 11970975.
67. Trabanelli S., Lecciso M., Salvestrini V. et al. PGE2-induced IDO1 inhibits the capacity of fully mature DCs to elicit an in vitro antileukemic immune response. J Immunol Res 2015; 2015: 253191. DOI: 10.1155/2015/253191. PMID: 25815345. PMCID: PMC4357138.
68. Schipper R.G., Romijn J.C., Cuijpers V.M. et al. Polyamines and prostatic cancer. Biochem Soc Trans 2003; 31(2): 375-80. DOI: 10.1042/bst0310375 PMID: 12653642.
69. Erbas H., Bal O., Cakir E. Effect of rosuvastatin on arginase enzyme activity and polyamine production in experimental breast cancer. Balkan Med J 2015; 32(1): 89-95. DOI: 10.5152/balkanmedj. 2015.15611. PMID: 25759778. PMCID: PMC4342145.
70. Della Bella S., Gennaro M., Vaccari M. et al. Altered maturation of peripheral blood dendritic cells in patients with breast cancer. Br J Cancer 2003; 89(8): 1463-72. PMID: 14562018.
71. Doherty J.R., Cleveland J.L. Targeting lactate metabolism for cancer therapeutics. J Clin Invest 2013; 123(9): 3685-92. DOI: 10.1172/JCI69741. PMID: 23999443. PMCID: PMC3754272.
72. Gottfried E., Kunz-Schughart L.A., Ebner S. et al. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 2006; 107(5): 2013-21. DOI: 10.1182/blood-2005-05-1795. PMID: 16278308.
73. Nasi A., Fekete T., Krishnamurthy A. et al. Dendritic cell reprogramming by endogenously produced lactic acid. J Immunol 2013; 191(6): 3090-9. DOI: 10.4049/jimmunol.1300772. PMID: 23956421.
74. Vaupel P., Mayer A. Hypoxia-Driven Adenosine Accumulation: A Crucial Microenvironmental Factor Promoting Tumor Progression. Adv Exp Med Biol 2016; 876: 177-83. DOI: 10.1007/978-1-4939-3023-4_22. PMID: 26782210.
75. Liang D., Zuo A., Shao H. et al. A2B adenosine receptor activation switches differentiation of bone marrow cells to a CD11c(+) Gr-1(+) dendritic cell subset that promotes the Th17 response. Immun Inflamm Dis 2015; 3(4): 360-73. DOI: 10.1002/iid3.74. PMID: 26734458. PMCID: PMC4693722.
76. Novitskiy S.V., Ryzhov S., Zaynagetdinov R. et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 2008; 112(5): 1822-31. DOI: 10.1182/blood-2008-02-136325. PMID: 18559975. PMCID: PMC2518889.
77. Dong H., Bullock T.N. Metabolic influences that regulate dendritic cell function in tumors. Front Immunol 2014; 5: 24. DOI: 10.3389/fimmu.2014.00024. PMID: 24523723. PMCID: PMC3906600.
78. Herber D.L., Cao W., Nefedova Y. et al. Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med 2010; 16(8): 880-6. DOI: 10.1038/nm. 2172. PMID: 20622859. PMCID: PMC2917488.
79. Gardner J.K., Mamotte C.D., Patel P. et al. Mesothelioma tumor cells modulate dendritic cell lipid content, phenotype and function. PLoS One 2015; 10(4): e0123563. DOI: 10.1371/journal.pone.0123563. PMID: 25886502. PMCID: PMC4401725.
80. Gao F., Liu C., Guo J. et al. Radiation-driven lipid accumulation and dendritic cell dysfunction in cancer. Sci Rep 2015; 5: 9613. DOI: 10.1038/srep09613. PMID: 25923834. PMCID: PMC4413852.
81. Cubillos-Ruiz J.R., Silberman P.C., Rutkowski M.R. et al. ER Stress Sensor XBP1 Controls Anti-tumor Immunity by Disrupting Dendritic Cell Homeostasis. Cell 2015; 161(7): 1527-38. DOI: 10.1016/j. cell. 2015.05.025.PMID: 26073941. PMCID: PMC4580135.
82. Wu R., Zhang Q.H., Lu YJ. et al. Involvement of the IRE1alpha-XBP1 pathway and XBP1s-dependent transcriptional reprogramming in metabolic diseases. DNA Cell Biol 2015; 34(1): 6-18. DOI: 10.1089/dna.2014.2552. PMID: 25216212. PMCID: PMC4281841.
83. Scanlon C.S., Banerjee R., Inglehart R.C. et al. Galanin modulates the neural niche to favour perineural invasion in head and neck cancer. Nat Commun 2015; 6: 6885. DOI: 10.1038/ncomms7885. PMID: 25917569. PMCID: PMC4476386.
84. Covenas R., Munoz M. Cancer progression and substance P. Histol Histopathol 2014; 29(7): 881-90. PMID: 24535838.
85. Voedisch S., Rochlitzer S., Veres T.Z. et al. Neuropeptides control the dynamic behavior of airway mucosal dendritic cells. PLoS One 2012; 7(9): e45951. DOI: 10.1371/journal.pone.0045951. PMID: 23049899. PMCID: PMC3458805.
86. Gilaberte Y., Roca M.J., Garcia-Prats M.D. et al. Neuropeptide Y expression in cutaneous melanoma. J Am Acad Dermatol 2012; 66(6): e201-8. DOI: 10.1016/j.jaad.2011.02.015. PMID: 21620518.
87. Buttari B., Profumo E., Domenici G. et al. Neuropeptide Y induces potent migration of human immature dendritic cells and promotes a Th2 polarization. FASEB J 2014; 28(7): 3038-49. DOI: 10.1096/fj. 13-243485. PMID: 24699455.
88. Makarenkova V.P., Shurin G.V., Tourkova I.L. et al. Lung cancer-derived bombesin-like peptides down-regulate the generation and function of human dendritic cells. J Neuroimmunol 2003; 145(1-2): 55-67. PMID: 14644031.
89. DeRosa D.C., Ryan P.J., Okragly A. et al. Tumor-derived death receptor 6 modulates dendritic cell development. Cancer Immunol Immunother 2008; 57(6): 777-87. DOI: 10.1007/s00262-007-0413-1. PMID: 17962943.
90. Valenti R., Huber V., Filipazzi P. et al. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 2006; 66(18): 9290-8. DOI: 10.1158/0008-5472.CAN-06-1819. PMID: 16982774.
91. Huang S.H., Li Y., Zhang J. et al. Epidermal growth factor receptor-containing exosomes induce tumor-specific regulatory T cells. Cancer Invest 2013; 31(5): 330-5. DOI: 10.3109/07357907.2013.789905. PMID: 23614656.
92. Ding G., Zhou L., Qian Y. et al. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget 2015; 6(30): 29877-88. DOI: 10.18632/oncotarget. 4924. PMID: 26337469.
93. Ring S., Pushkarevskaya A., Schild H. et al. Regulatory T cell-derived adenosine induces dendritic cell migration through the Epac-Rap1 pathway. J Immunol 2015; 194(8): 3735-44. DOI: 10.4049/jimmunol. 1401434. PMID: 25780038.
94. Feijoo E., Alfaro C., Mazzolini G. et al. Dendritic cells delivered inside human carcinomas are sequestered by interleukin-8. Int J Cancer 2005; 116(2): 275-81. DOI: 10.1002/ijc.21046. PMID: 15800914.
95. Shurin M.R., Yurkovetsky Z.R., Tourkova I.L. et al. Inhibition of CD40 expression and CD40-mediated dendritic cell function by tumor-derived IL-10. Int J Cancer 2002; 101(1): 61-8. DOI: 10.1002/ijc.10576. PMID: 12209589.
96. Schwarz A.M., Banning-Eichenseer U., Seidel K. et al. Impact of interleukin-10 on phenotype and gene expression during early monocyte differentiation into dendritic cells. Anticancer Res 2013; 33(11): 4791-8. PMID: 24222115.
97. Lo A.S., Gorak-Stolinska P., Bachy V. et al. Modulation of dendritic cell differentiation by colony-stimulating factor-1: role of phosphatidylinositol 3’-kinase and delayed caspase activation. J Leukoc Biol 2007; 82(6): 1446-54. DOI: 10.1189/jlb.0307142. PMID: 17855501.
98. Yang L., Yamagata N., Yadav R. et al. Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. J Clin Invest 2003; 111(5): 727-35. DOI: 10.1172/JCI16492. PMID: 12618527. PMCID: PMC151895.
99. Stoitzner P., Green L.K., Jung J.Y. et al. Inefficient presentation of tumor-derived antigen by tumor-infiltrating dendritic cells. Cancer Immunol Immunother 2008; 57(11): 1665-73. DOI: 10.1007/s00262-008-0487-4. PMID: 18311487.
100. Teicher B.A., Fricker S.P. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clinical cancer research: an official journal of the American Association for Cancer Research 2010; 16(11): 2927-31. DOI: 10.1158/1078-0432. CCR-09-2329. PMID: 20484021.
Рецензия
Для цитирования:
Кескинов А.А., Щурин М.Р., Бухман В.М., Шпрах З.С. ВЛИЯНИЕ СЕКРЕТИРУЕМЫХ ОПУХОЛЬЮ ВЕЩЕСТВ НА ДЕНДРИТНЫЕ КЛЕТКИ ПРИ РАКЕ. Российский биотерапевтический журнал. 2017;16(1):12-23. https://doi.org/10.17650/1726-9784-2017-16-1-12-23
For citation:
Keskinov A.A., Shurin M.R., Bukhman V.M., Shprakh Z.S. IMPACT OF TUMOR-DERIVED FACTORS ON DENDRITIC CELLS IN CANCER. Russian Journal of Biotherapy. 2017;16(1):12-23. (In Russ.) https://doi.org/10.17650/1726-9784-2017-16-1-12-23