Preview

Russian Journal of Biotherapy

Advanced search

Study of level and selectivity of liposomal form of photosensitiser hydroxyaluminium tetra-3-phenylthiophthalocyanine accumulation on transplantable mice tumor models at different ways of transplantation

https://doi.org/10.17650/1726-9784-2017-16-4-74-79

Abstract

Background. Current work is devoted to the study in vivo of concentration and selectivity of accumulation of infrared photosensitizer (PS) hydroxyaluminium tetra-3-phenylthiophthalocyanine in liposomal form in intramuscularly and subcutaneously transplanted mice tumor models in comparison to normal tissues. Objective: to study the level and selectivity of accumulation of hydroxyaluminium tetra-3-phenylthiophthalocyanine liposomal form on mice tumor models in order to optimize the transplantation approach and the starting of photodynamic treatment. Materials and methods. A range of transplantable mice tumors was used in the study: solid carcinoma Ehrlich (ELD) and solid sarcoma S-37, epidermoid Lewis lung carcinoma (LLC) and colon adenocarcinoma (AKATOL). For the assessment of concentration of PS in tissues was evaluated by fluorescence spectroscopy in vivo. Results. The optimum transplantation approaches were shown to be as follows. Solid carcinoma Ehrlich (ELD) provided the highest accumulation of PS when transplanted intramuscularly. Five hours after administration concentration of PS in tumor achieves more than 7 mg/kg, with selectivity in comparison to normal tissue 3 : 1. The maximum concentration of PS in sarcoma S-37 was observed with subcutaneous transplantation, achieving at 5 h after administration the value of 5.4 mg/kg with selectivity of accumulation 4.3: 1. Both LLC and AKATOL showed optimum results with intramuscular transplantation. Maximum concentration of PS in LLC was observed 5 h after administration, achieving 7.5 mg/kg with selectivity exceeding 4. Concentration of photosensitizer in AKATOL 7h post administration achieved 6.8 mg/kg with selectivity about 2. Conclusions. Liposomal form of PS with intravenous administration selectively accumulates in tumors. The obtained experimental data allows to recommend the method of listed tumors models transplantation for the studies of PS.

About the Authors

G. A. Meerovich
Prokhorov General Physics Institute, RAS; National Research Nuclear University “MEPhI”
Russian Federation


L. M. Borisova
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation


A. P. Bud’Ko
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation


M. P. Kiseleva
National Research Nuclear University “MEPhI”
Russian Federation


L. L. Nikolaeva
National Research Nuclear University “MEPhI”; I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
Russian Federation


I. G. Meerovich
Research Center of Biotechnology RAS
Russian Federation


A. V. Lantsova
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation


S. V. Chernova
I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
Russian Federation


N. A. Oborotova
Prokhorov General Physics Institute, RAS
Russian Federation


References

1. Санарова Е.В., Ланцова А.В., Оборо-това Н.А. Липосомальные системы доставки лекарственных веществ: свойства и технологические особенности получения. Биофармацевтический журнал 2014; 6(4): 3-13.

2. Барышников А.Ю., Борисова Л.М., Ворожцов Г.Н. и др. Фотосенсибилизатор, липосомальная форма фотосенсибилизатора и способ проведения фотодинамической терапии. Патент РФ № 2257898 от 10.08.2005.

3. Kogan E.A., Meerovich G.A., Torshina N.L. et al. Systemic estimation of the effect of photodynamic therapy of cancer. Proc SPIE 1997; 3191. DOI: 10.1117/12.297803.

4. Meerovich G.A., Stratonnikov A.A., Loschenov V.B. et al. Different pathways of tumor damage due to PDT: the influence of parameters of laser irradiation. Proc SPIE 2001; 4156. DOI: 10.1117/12.413726.

5. Meerovich G.A., Stratonnikov A.A., Loschenov V.B. et al. Influence of parameters of laser irradiation on the mechanisms of tumor damage due to PDT. Proc SPIE 2001; 4248. DOI: 10.1117/12.424441.

6. Санарова Е.В., Ланцова А.В., Полозкова А.П. и др. Эффективность липосомальной системы доставки гидрофобного противоопухолевого фотосенсибилизатора Тиосенса. Российские нанотехнологии 2015; 10(5-6): 136-43. DOI: 10.1134/S1995078015030143.

7. Sanarova E., Meerovich I., Lantsova A. et al. Thiosens liposomal dosage form technology development and photodynamic efficiency assessment. J Drug Deliv Sci Tech 2014; 24(4): 315-9. DOI: 10.1016/S1773-2247(14)50068-8.

8. Большаков О.П., Незнанов Н.Г., Ба-баханян Р.В. Дидактические и этические аспекты проведения исследований на биомоделях и лабораторных животных. Качественная клиническая практика 2002: 1: 58-61.

9. Экспериментальная оценка противоопухолевых препаратов в СССР и США. Под ред. З.П. Софьиной, А.Б. Сыркина, А. Голдина, А. Кляйна. М.: Медицина, 1980. С. 71-112.

10. Savel’eva T.A., Ryabova A.V., Andreeva I.V. et al. Combined spectroscopic method for determining the fluorophore concentration in highly scattering media. Bulletin of the Lebedev Physics Institute 2011; 38(11): 334-8. DOI: 10.3103/S1068335611110042.

11. Руководство по проведению доклинических исследований лекарственных средств. Часть I. Под ред. А.Н. Миронова. М.: Гриф и Ко, 2012. 664 с.


Review

For citations:


Meerovich G.A., Borisova L.M., Bud’Ko A.P., Kiseleva M.P., Nikolaeva L.L., Meerovich I.G., Lantsova A.V., Chernova S.V., Oborotova N.A. Study of level and selectivity of liposomal form of photosensitiser hydroxyaluminium tetra-3-phenylthiophthalocyanine accumulation on transplantable mice tumor models at different ways of transplantation. Russian Journal of Biotherapy. 2017;16(4):74-79. (In Russ.) https://doi.org/10.17650/1726-9784-2017-16-4-74-79

Views: 426


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)